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Abstract. We show that the approach to equilibrium in non-linear-Hamiltonian systems 
exhibits strongly non-gaussian features (intermittency). The intensity of the phenomenon 
grows fainter until it vanishes near equilibrium. We present a heuristic interpretation of 
such behaviour confirmed by numerical simulations on the system described by a one- 
dimensional classical 44 field theory. 

1. Introduction 

Intermittency, one of the most interesting phenomena of non-linear dissipative systems 
(e.g. turbulence), is not yet well understood either experimentally or theoretically 
(Monin and Yaglom 1975 (§ 2 5 ) ,  Manneville and Pomeau 1980). 

The physical quantities that describe the process (e.g. a velocity gradient) exhibit 
long, quiet periods alternating with short periods of strong activity (intermittent bursts). 

Intermittency can be interpreted in the theory of turbulence as an irregular transfer 
of energy-a peculiar non-linear feature-from each scale of motion to the next 
shorter one (Frisch et a1 1978). Such a flow of energy occurs on every scale concerning 
the motion up to the dissipative scale. This situation may appear as a stationary state 
from the statistical point of view. Turbulence indeed exhibits intermittency both when 
approaching the stationary state and when it has been reached. The latter case is 
explained by the dissipative nature of the turbulent system whose steady state is 
maintained by means of a constant external energy pumping into large scales. 

To our knowledge, few attempts have been made to explore the presence of 
intermittency in non-dissipative systems: only Kraichnan (1967, 1975) and Frisch and 
Morf (1981) tried to connect intermittency with the general properties of the non-linear 
equations that describe a system, disregarding its dissipative nature. 

The main reason for this deficiency is probably that discussions on turbulence 
often introduce the intermittency as being related to a concentration of dissipated 
energy in small, irregular regions (Corrsin 1962, Saffman 1968). The quoted interpre- 
tation has only recently been adopted generally. 
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In conservative systems we could conclude that, since there is no energy dissipation, 
no phenomenon like intermittency can exist. However, Kraichnan (1975) first 
advanced the hypothesis that intermittency could subsist in conservative systems far 
from equilibrium by the following argument. 

He considered systems described by the Euler equation of energy conservation: 
i&. Iu(k)l2 = constant (where U (k) is the Fourier transform of the velocity field U (x, t ) ) ,  
together with the usual arguments of equilibrium statistical mechanics (e.g. the 
maximum entropy principle), yields the probability distribution 

/ 

This result was confirmed by numerical simulations (Orszag and Patterson 1972). The 
equilibrium probability distribution of {U (k)} is a gaussian and therefore the presence 
of intermittency should be excluded. 

Let us now consider the way the system approaches equilibrium. Initially, all the 
energy is confined into the large scales; then the system evolves towards an equiparti- 
tioned final state by virtue of the non-linear terms of the interaction which couple 
the motion scales among themselves. 

Kraichnan stresses the point that such an energy ‘cascade’ mechanism from large 
to small scales is universal for both dissipative and non-dissipative systems. For 
non-dissipative systems, however, the energy flow is damped provided small scales 
(large k) are completely filled (i.e. energy equipartition is attained). 

In this paper we attempt to verify the above predictions on a non-linear-Hamil- 
tonian system-a classical 94 field theory-studied previously by Fucito et a1 (1982). 
In 0 2 we sketch our analytic treatment of the system and exhibit its intermittent 
behaviour during its approach to equilibrium from numerical simulations. In 0 3 we 
present a heuristic interpretation of the results obtained. 

2. The model and numerical results 

Fucito et a1 (1982) and Marchesoni and Sparpaglione (1982) studied the time evolution 
of the system described by the motion equation 

d = aZ4 - m24 - g43 (2.1) 

where 4 (x, t )  with x E [-iL, i L ]  is a one-dimensional scalar field subject to periodic 
boundary conditions. 

Our numerical simulations are carried out by discretising equation (2.1) upon a 
string of length L = 1 composed of N equidistant points. The field 4 ( x ,  t )  is then 
represented by the variables &(t )  = 4 ( i A x  - iL ,  t )  with i = 1, N, where Ax = 1/N and 
the boundary condition is rewritten as q5N+1 = 41. 

We analyse the situation in which the energy system is initially concentrated in 
the smallest wavenumber modes. We realise such a configuration by choosing, for 
example, the initial conditions as 

1 N/2 

(27) m = l  
q$(O)=- 1 (am(0)  cos[27r(i-l)m/N]+bm(0)sin[27r(i-l)m/N]) (2.2) 

qji(0) = 0 
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with 

when N = 128 is adopted. 

(Benettin et a1 1980): 
The method of numerical integration we use is called the central difference method 

and the initial condition d(0) corresponds to di(-At) = di(0). The integration pro- 
cedure is stable in a large range of the adopted values for At ( 5  x 10-3-10-5) and N 
(64-1024) and conserves the energy to within 0.1%. 

Fucito et a1 (1982) studied the time behaviour of the spectrum both numerically 
and theoretically: 

wfl(t) = lafl(t)l’+ lbfl(t)I2. (2.4) 

The following results have been verified for several values of t (0.1-loo), A (5x 
10-3-10) and g (0.2-10): 

wfl(t) - exp(-S(t)k,) k, = 2 m / L  (2.5) 
with 

-ln(g’/’At) i (gA2 In t ) - ’ / ’  
S ( t )  = 

‘short time regime’ 
Y 

(2 .6)  
‘intermediate time regime’ 

where the time scale that separates the two regimes depends on the initial conditions 
and the strength of the non-linear coupling ((gA2)-’/’). 

The results of equations (2.5) and (2.6) have been obtained theoretically by 
generalising an idea due to Frisch and Morf (1981). Let us assume that the analytic 
continuation 4 ( z ,  t )  of the field 4 ( x ,  t )  in the complex plane z = ( x ,  y )  is an analytic 
but non-entire function: equation (2.5) follows immediately with S ( t )  = 2y,(t), where 
y s ( t )  is the imaginary part of the nearest singularity of 4 ( z ,  t )  to the real axis (for the 
derivation of equation (2.6) see Fucito et a1 (1982)). 

A consequence of equation (2.6) is that the system approaches equilibrium with 
a logarithmic dependence on t, so that the non-equilibrium spectrum may persist for 
extremely long times and may be mistaken for a stationary state if the observation 
time is not sufficiently long. 

Persistence of the trend described by equation (2.5) for very long times is crucial 
for our heuristic interpretation of the intermittent behaviour of the system which we 
will expound. In order to characterise such an effect quantitatively, we exploit a 
quantity usually introduced in this kind of problem (Monin and Yaglom 1975 ( 0  25), 
Frisch et a1 1978): the kurtosis F. For a random variable ~ ( x ) ,  F is defined as 
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If q ( x )  is a gaussian variable then F = 3;  larger values of F mean that the probability 
distribution of q allows strong fluctuations in comparison with the mean values (7). 

As we noticed in § 1, we expect that large deviations from gaussian characterise 
the energy propagation from large to short scales. This effect is enhanced if we choose 
to observe quantities more appropriate to the dynamics of the large wavenumber 
modes for which the intermittent features should be more relevant. 

We investigated two different choices. The former consists in computing the 
kurtosis of the spatial derivatives of the field at the time t :  

['"'(x, t )  = a:4(x ,  t )  

according to the definition 

In figures l(a, b, c)  we show the time dependence of F F ' ( t )  for different values of n 
and A.  We note immediately the following features. 

(i) The time behaviour of F is characterised by high peaks which appear initially 
at regular intervals of time. At larger times F achieves values close to the characteristic 
value of the gaussian processes. These different behaviours correspond to the short 
and intermediate time regimes, respectively, as can be seen by comparison with the 
time dependence of S ( t )  drawn in figure 1. 

(ii) For small values of A the initial structure remains longer according to the 
energy dependence of the short time regime that is known to persist for smaller 
energies. 

(iii) The values of F increase with the order of the field derivatives n,  but the 
structure of the peaks is preserved. This feature confirms the idea that intermittency 
characterises the energy flow from large to short scales since higher-order derivatives 
favour the role of the short scales much more. 

7t 

t 
Figure 1. 
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Figure 1. FF' and S against time; g = 5 ,  A = 0.2, N = 128. e---@, n = 6 ;  0-0, 
n = 3 ;  * - -  *, n = 1; U - E I S .  ( a )  A = 1, (6) A = 5 ,  (c)  A =  10. 

We have obtained the same results studying the variable introduced by applying 
numerically a high band-pass filter on the field 4 ( x ,  t ) .  In other words, we cut away 
the Fourier components with smaller wavenumbers (k > n )  and computed the kurtosis 
of the reconstructed field: 

2 (am( t )  cos(2~r(m - l ) x / N )  + b,(t) sin(2~r(m - l)x/N)), 
1 

['"'(x, t )  = ~ 

(2T)l'* m s n  

In order to have a check of the systematic effects due to the numerical method of 
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6 -  

integration at the same time, we introduce the following definition of kurtosis in this 
case: 

t + A / 2  r + A / 2  

FP’ =- N 1 N  i = l  1 (i - I,-,,, d ~ l ! ” ) ( ~ ) ) ~ / [ ~  N i = l  2 (:I 1-A/2 ~ T [ : ” ) ( T ) ) ~ ] * ,  (2.9) 

We notice that the definitions (2.8) and (2.9) of kurtosis differ because the average 
in Fe is essentially a time average while that in Fc is a spatial one. 

In figures 2(a, 6, c )  we show the results obtained for the same values of A and g 
adopted in figure 1. 

* 
\ 
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1 I I  
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Figure 2. F?’ against time; g = 5 ,  A = 0.2, N = 128. 0-0, n = 8; 0- - -4, n = 6 .  
( a )  A = 1, ( b )  A = 5 ,  ( c )  A = 10. 
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3. Interpretation of the numerical results 

In this section we propose a heuristic interpretation of the results presented above. 
Firstly we have to justify the large values of the kurtosis appearing in the numerical 
simulations of 0 2. 

To this aim we develop the idea of Frisch and Morf (1981). If f(")(x, t )  is the 
reconstructed field through a high band-pass filter with k > k, (k, = 2 m / N ) ,  we can 
assert that in the short time regime only one pole in the complex z plane dominates 
the intermittent behaviour of the system (Fucito et a1 1982, Frisch and Morf 1981): 

(x - x s )  cos[k,(x - x s ) ] + y s  sin[k,(x -x,)] 
p ( x ,  t )  = - exp(-y,k,). (3.1) 

( x - x s ) 2 + Y :  

Equation (3.1) describes an x -modulated intermittent burst with wavenumber k,. 
The modulation envelope is centred at the real part x s  of the singularity and decreases 
in inverse proportion to the separation from the centre. There is an overall amplitude 
factor which favours the singularities close to the real axis. The symmetry q5(-x, t )  = 
q5 ( x ,  t )  of equation (2.1) and of the initial conditions implies the contemporary existence 
of another burst centred at -xs. 

If we now substitute 4"") of equation (3.1) into equation (2.9) for FP', we obtain 
a function which increases with n, i.e. with the frequency threshold of the filter. 
Moreover, its time behaviour is governed by the time dependence of y , ( t ) .  In particular 
a peak structure is apparent in both figures 1 and 2, and can be understood by assuming 
that the position of the closest pole to the real axis y s ( t )  oscillates. 

Let us consider only the short time regime for which the above assumption is 
immediately justified. We demonstrated that in such an approximation 

y , ( t ) -  -ln(g"2At)/ko 

(see equation (2.6)), so that the pole falls from infinity towards the real axis with a 
charxteristic time proportional to (gA2)-1'2. Such a trend should be interpreted as 
a sort of average over small time intervals (Fucito er a1 1982) close to which the 
instantaneous position of the pole fluctuates. Indeed several contributions neglected 
in the naive approach yielding equation (2.6) also concur to determine the actual 
trajectory of the pole y s ( t ) .  

We notice that in equation (3.1) y , ( t )  appears as the argument of an exponential: 
this implies that even very small variations of y s  can induce large variations of the 
kurtosis values and give rise to the irregular structures of Fe and Fc shown in figures 
1 and 2. 

The long time behaviour of the kurtosis can also be interpreted in the frame of 
our model. Fucito et a1 (1982) showed that the intermediate time regime (in figure 
1 it corresponds to the flat end of y S ( t ) )  is characterised by the contemporary presence 
of many singularities close to the real axis. This means that, whatever their trajectories 
may be, the distance of the nearest pole to the real axis y , ( t )  changes slightly with 
time and that intermittent bursts of different intensities arise and overlap in such a 
way that an intermediate quasi-ordered condition with small kurtosis values is restored. 

This explanation of the time behaviour of Fe and Fc is in qualitative agreement 
with the observed decrease of the activity interval of the kurtosis as A increases. 
Indeed as the intermediate time regime is achieved, several singularities grouped near 
the real axis stabilise the values of the kurtosis close to the quasi-equilibrium values. 
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Nevertheless figure 3 shows that some kind of intermittency survives in the 
intermediate time regime. This fact is in agreement with the Kraichnan (1967) 
argument about the additional presence of intermittency for observables with distribu- 
tions like equation (2.5). In addition, the spectrum of the field d(x, t )  retains the 
form (2.5) till the large wavenumber modes are almost filled by the energy flow. We 
can conclude that an intermittent behaviour should persist throughout the approach 
to equilibrium (energy equipartition). 

r 

I 
I , I I I I 1 -  

20 18 16 12 14  10 
t 

Figure 3. FYo’ against time; g = 5, A = 0.2, N = 128. 
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